Search

Tuesday, May 11, 2010

EXTRACTION


Locating an oil field is the first obstacle to be overcome. Today, petroleum engineers use instruments such as gravimeters and magnetometers in the search for petroleum. Generally, the first stage in the extraction of crude oil is to drill a well into the underground reservoir. Historically, in the USA, some oil fields existed where the oil rose naturally to the surface, but most of these fields have long since been depleted, except for certain remote locations in Alaska. Often many wells (called multilateral wells) are drilled into the same reservoir, to ensure that the extraction rate will be economically viable. Also, some wells (secondary wells) may be used to pump water, steam, acids or various gas mixtures into the reservoir to raise or maintain the reservoir pressure, and so maintain an economic extraction rate.

If the underground pressure in the oil reservoir is sufficient, then the oil will be forced to the surface under this pressure. Gaseous fuels or natural gas are usually present, which also supply needed underground pressure. In this situation it is sufficient to place a complex arrangement of valves (the Christmas tree) on the well head to connect the well to a pipeline network for storage and processing. This is called primary oil recovery. Usually, only about 20% of the oil in a reservoir can be extracted this way.

Over the lifetime of the well the pressure will fall, and at some point there will be insufficient underground pressure to force the oil to the surface. If economical, and it often is, the remaining oil in the well is extracted using secondary oil recovery methods (see: energy balance and net energy gain). Secondary oil recovery uses various techniques to aid in recovering oil from depleted or low-pressure reservoirs. Sometimes pumps, such as beam pumps and electrical submersible pumps (ESPs), are used to bring the oil to the surface. Other secondary recovery techniques increase the reservoir's pressure by water injection, natural gas reinjection and gas lift, which injects air, carbon dioxide or some other gas into the reservoir. Together, primary and secondary recovery allow 25% to 35% of the reservoir's oil to be recovered.

Tertiary oil recovery reduces the oil's viscosity to increase oil production. Tertiary recovery is started when secondary oil recovery techniques are no longer enough to sustain production, but only when the oil can still be extracted profitably. This depends on the cost of the extraction method and the current price of crude oil. When prices are high, previously unprofitable wells are brought back into production and when they are low, production is curtailed. Thermally enhanced oil recovery methods (TEOR) are tertiary recovery techniques that heat the oil and make it easier to extract.

Steam injection is the most common form of TEOR, and is often done with a cogeneration plant. In this type of cogeneration plant, a gas turbine is used to generate electricity and the waste heat is used to produce steam, which is then injected into the reservoir. This form of recovery is used extensively to increase oil production in the San Joaquin Valley, which has very heavy oil, yet accounts for 10% of the United States' oil production. In-situ burning is another form of TEOR, but instead of steam, some of the oil is burned to heat the surrounding oil. Occasionally, detergents are also used to decrease oil viscosity. Tertiary recovery allows another 5% to 15% of the reservoir's oil to be recovered.

Alternative means of producing oil
As oil prices continue to escalate, other alternatives to producing oil have been gaining importance. The most viable of these is the coal to oil process, of which the most efficient is the Karrick process, which converts coal into crude oil. Production has been esitmated to be work out at about $35 per barrel.

A less efficient metholdology is the Fischer-Tropsch process. It was a concept pioneered in Nazi Germany when imports of petroleum were restricted due to war and Germany found a method to extract oil from coal. It was known as Ersatz ("substitute" in German), and accounted for nearly half the total oil used in WWII by Germany. However, the process was used only as a last resort as naturally occurring oil was much cheaper. As crude oil prices increase, the cost of coal to oil conversion becomes comparatively cheaper.

The method involves converting high ash coal into synthetic oil in a multistage process. Ideally, a ton of coal produces nearly 200 liters (1.25 bbl, 52 US gallons) of crude, with by-products ranging from tar to rare chemicals.
Currently, two companies have commercialised their Fischer-Tropsch technology. Shell in Bintulu, Malaysia, uses natural gas as a feedstock, and produces primarily low-sulfur diesel fuels. Sasol in South Africa uses coal as a feedstock, and produces a variety of synthetic petroleum products. The process is today used in South Africa to produce most of the country's diesel fuel from coal by the company Sasol. The process was used in South Africa to meet its energy needs during its isolation under Apartheid. This process has received renewed attention in the quest to produce low sulfur diesel fuel in order to minimize the environmental impact from the use of diesel engines.

More recently explored is Thermal depolymerization (TDP). In theory, TDP can convert any organic waste into petroleum.

No comments:

Post a Comment